Real-Time Banking CDC Pipeline

One-line value statement: Captures banking transaction changes in real-time using CDC, transforming operational data into analytics-ready models for business intelligence.

Overview

Traditional batch ETL processes introduce latency between operational events and analytics, limiting real-time decision making. This project implements a Change Data Capture (CDC) pipeline that streams banking transactions, account updates, and customer changes from a PostgreSQL OLTP system into Snowflake in near real-time. The pipeline uses Debezium to capture database changes at the transaction log level, Kafka for reliable event streaming, and DBT for transformation into dimensional models. The result is a scalable, fault-tolerant data platform that enables business teams to analyze banking activity with sub-minute latency.

Goals

Architecture

Banking CDC Pipeline Architecture

┌─────────────────────────────────────────────────────────────┐
│ Source System (OLTP) │
│ PostgreSQL + Faker Data Generator │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Change Data Capture │
│ Debezium (captures Postgres WAL) │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Event Streaming │
│ Apache Kafka (reliable message delivery) │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Object Storage │
│ MinIO (S3-compatible staging layer) │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Data Warehouse (Lakehouse) │
│ Snowflake (Bronze → Silver → Gold layers) │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Transformation & Orchestration │
│ DBT (modeling) + Airflow (scheduling) │
└──────────────────────────┬──────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Analytics & Visualization │
│ Power BI / SQL Analytics │
└─────────────────────────────────────────────────────────────┘

Technology Stack

LayerTechnologies
Source SystemPostgreSQL (OLTP), Python Faker (data generation)
Change Data CaptureDebezium Postgres Connector
Event StreamingApache Kafka, Kafka Connect
Object StorageMinIO (S3-compatible)
Data WarehouseSnowflake (Bronze, Silver, Gold layers)
TransformationDBT (dimensional modeling, SCD Type-2)
OrchestrationApache Airflow (DAG scheduling, snapshots)
CI/CDGitHub Actions (automated tests, deployment)
ContainerizationDocker, Docker Compose

Implementation Details

Why CDC over batch ETL?
Traditional batch ETL introduces latency (hours or overnight) between operational changes and analytics. CDC captures changes at the transaction log level, enabling near real-time analytics while minimizing source database impact. Debezium reads PostgreSQL’s Write-Ahead Log (WAL) without adding query load to the production database.

Event streaming architecture
Kafka provides guaranteed message delivery with configurable retention. This decouples producers (Debezium) from consumers (Snowflake ingestion), allowing the pipeline to handle backpressure and temporary downstream failures. Messages are consumed by a Python connector that batches events into MinIO before loading into Snowflake.

Medallion architecture
The pipeline implements a three-tier lakehouse pattern:

SCD Type-2 for dimension tracking
Customer and account dimensions use slowly changing dimension (SCD) Type-2 to track historical changes. DBT snapshots capture state changes with valid_from and valid_to timestamps, enabling point-in-time analysis and trend reporting.

Idempotency and fault tolerance
Each DAG run is idempotent using upsert operations based on transaction IDs and timestamps. Failed runs can be retried without creating duplicates. Kafka offsets ensure exactly-once semantics from source to warehouse.

Tradeoffs accepted

Data Characteristics

MetricValue
Volume~10K transactions/day (scalable to millions)
FrequencyReal-time (sub-minute latency)
FormatCDC events (JSON) → Parquet → Snowflake tables
GrowthLinear with transaction volume
EntitiesTransactions, Accounts, Customers
SCD StrategyType-2 for dimensions, append-only for facts

Reliability & Edge Cases

Data quality checks
DBT tests validate:

Error handling

Operational resilience

Lessons Learned

CDC complexity requires careful configuration
Debezium requires precise configuration of Postgres replication slots and WAL settings. Initial issues with slot bloat taught me the importance of monitoring replication lag and setting appropriate retention policies. In production, I would implement automated cleanup of old slots.

Schema evolution is a first-class concern
Adding new columns to source tables required coordinating changes across Debezium connectors, Kafka schemas, and DBT models. A future enhancement would implement schema registry (like Confluent Schema Registry) for centralized schema management and validation.

Testing in streaming pipelines differs from batch
Unlike batch ETL where you can rerun entire datasets, streaming pipelines accumulate state over time. I learned to use DBT’s ephemeral models and dedicated test environments to validate transformations without polluting production data.

Cost optimization requires active monitoring
Snowflake warehouses that stay running 24/7 for real-time loads can become expensive. I implemented auto-suspend after 5 minutes of inactivity and used smaller warehouses for transformation vs. loading, reducing costs by ~60%.

Future Improvements

Near-term enhancements:

Advanced features:

Operational maturity: